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L Introduction

In systems where independent users transmit through a single common channel, the deploy-
ment of random access transmission algorithms is frequently desirable, for the following rea-
sons: (1) They are implemented independently by each user, without a prior coordination
among the users. (2) They are insensitive to changing user population. (3) They induce low
delays wien the user traffic is bursty.

In this paper, we present and analyze a full sensing window random access algorithm. The
algorithm was first proposed for systems with strict delay limitations, [3], and it requires that
each user know the overall feedback history, (full sensing). As compared to other such existing
algorithms, the present algorithm has the following interesting and beneficial properties: (1) It
can be easily modified to operate in limited sensing environments, where each user follows the
feedback history from the time he generates a message to the time when this message is success-
fully transmitted. (2) In the presence of the limit Poisson user model, the algorithm attains the
same throughput as that attained by the Capetanakis' dynamic algorithm, [1], while it induces
significantly lower, delays for arrival rates above 0.30, and superior resistance to feedback errors.
(3) The simple operations of the algorithm allow analysis and evaluation when strict delay limi-
tations exist, [3]. Its simplicity, in conjunction with its regenerative properties, provide the
means for the analysis and evaluation of the output traffic interdeparture distribution induced by
the algorithm. The analysis of the latter distribution is important when several systems which
use some Random Access Algorithm, (RAA), for internal transmissions interact, and it is not
quite feasible when either the Capetanakis, [1], or the Gallager, [2], algorithms are deployed. (4)
As compared to Gallager's algorithm, [2], the present algorithm operates in environments where
the Poisson model is not valid, (e.g., when more than one packets can be generated within a
given time instant), and can be then analyzed.

The organization of the paper is as follows: In section II, the system model is presented,
and the algorithm is described. In section III. the throughput and delay analyses are included, in
the presence of the limit Poisson user model, and in the absence of feedback errors. In section
IV, the performance of the algorithm in the presence of feedback errors and its operations in lim-
ited sensing environments are discussed. In section V, the output traffic interdeparture distribu-
tion induced by the algorithm is analyzed and evaluated. In section VI, some conclusions are
drawn.

C U. The System Model and the Algorithm

We assume packet transmitting users, slotted channel, binary collision versus noncollision,
(CNC), feedback per slot, no propagation delays, and absence of feedback errors. We also
assume nonexistence of error correction coding; thus, collided packets are fully destroyed and
retransmission is then necessary. Time is measured in slot units, slot t occupies the time interval
[t, t+l), and xt denotes the feedback that corresponds to slot t; x, = C and x, = NC represent then
collision and noncollision slot t, respectively. For this system, let the following full sensing syn-
chronous random access algorithm be deployed.

The algorithm utilizes a window of length A. Let t be a time instant such that, for some
t, < t, all the packet arrivals in (0, t1] have been successfully transmitted by the algorithm and
there is no information regarding the arrival interval (t1, t], and such that t corresponds to the

¢,, ,e; ;,;' ;';' x ,; ';~ye.% ,.,/ %,,,,.' ,. ', .. ?.;.'.,, ,.-.... .,.'.: ?...... - ... ;.... :.



beginning of some slot. The instant t is then called Collision Resolution Point, (CRP), the
arrival interval (0, t1] is called "resolved interval", and the interval (t1 t] is called "the lag at t".

In slot t, the packet arrivals in (t1 t2 A min (t + A,t)] attempt transmission, and the arrival inter-
val (t1, t2] is then called the "examined interval". If (t1, t2] contains at most one packet, then it is
resolved at t. If (t1, t2] contains at least two packets, instead, then xt = C, a collision occurs at t,
and its resolution starts with slot t+l. Until the collision at t is resolved, no arrivals in (t2, -c) are
allowed transmission. The time period required for the resolution of the latter collision is called
the Collision Resolution Interval, (CRI). During some CRI, each user acts independently via the
utilization of a counter whose value at time t is denoted rt.The counter values can be either 1 or
2, and they are updated and utilized according to the rules below.

1. The user transmits in slot t, if and only if r, = 1. A packet is successfully transmitted in t, if
and only if rt = 1 and xt = NC.

2. The counter values transition in time as follows:

(a) Ifxt. t = NC and r,- = 2, then r, = 1

(b) If xt- I = C and rt_ 1 = 2, then rt=2

(c) If xt_1 = C and r,_1 = 1, then

[ ,with probability 0.5
rt = 2,with probability 0.5

Remarks We note that the algorithmic operations can be depicted by a two-cell stack, where at
each time instant t, cell 1 contains the transmitting users, (those with rt = 1), and cell 2 contains
the withholding users, (those with r, = 2). The algorithm lumps, thus, the unsuccessful users
together. In contrast, Capetanakis' algorithm distributes the unsuccessful users across the cells
of an infinite-cell stack. As with Capetanakis' dynamic algorithm, the window size A is here
subject to optimization for throughput maximization.

M. Throughput and Delay Analysis

In this section, we present the throughput and delay analyses of the algorithm, in the
absence of feedback errors, in the full sensing environment, and in the presence of the limit Pois-
son user model. As proven in [5], the latter user model represents a lower bound. That is, when
the user population in finite, the users are independent and identical, and the packet generation
process per user is memoryless, then the throughput and delay characteristics of the algorithm
are superior to those induced when the user environment is limit Poisson.

Let the system start operating at time zero, and let us consider the sequence in time of lags
that are induced by the algorithm. Let Ci denote the length of the i-th lag, where i>l. Then, the
first lag corresponds to the empty slot zero; thus, C1 = 1. In addition, the sequence Ci; i> I is a
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Markov chain whose state space is at most countable. Let D, denote the delay experienced by
the n-th successfully transmitted packet arrival, as induced by the algorithm; that is, the time
between the arrival of the packet and its successful transmission. Let the sequence Ti, i:l be
defined as follows: Each Ti corresponds to the beginning of some slot, and Ti = 1. Also, each Ti
corresponds to the ending point of a length-one lag. Ti+1 is then the ending point of the first after
Ti unity length lag. Let R,, i .l denote the number of successfully transmitted packets in the time
interval (0, Ti]. Then, Qi = Ri+1 - Ri, i l denotes the number of successfully transmitted packets
in the interval (Ti, Ti+l]. The sequence Qi, i l is a sequence of i.i.d. random variables; thus
Ri , i .l is a renewal process. In addition, the delay process Dn, n_1 induced by the algorithm is
regenerative with respect to the process Ri, i> 1 and the distribution of Qi is nonperiodic, since
P(Q = 1) >0.

Let us define,

i=1

From the regenerative arguments in [4], it follows that the expected per successfully
transmitted packet steady-state delay, D , is given by the following expression:

D = W Z- ' (2)

The effective computation of D relies on the successful derivation of upper and lower bounds on
the quantities W and Z. Those bounds are found via the utilization of the methodology in [41, in
conjunction with the quantities defined in [3]; the details are thus omitted. If E (I I A,d) denotes
the expected length of a CRI, given that it starts with an examined interval of length A and with
a lag d, then bounds on W and Z can be found only if:

A> E(I IA,d) (3)

The inequality in (3) determines the stability region of the algorithm. Let us define,

1.-m k-n: The expected number of slots needed by the algorithm for the successful
transmission of k packets, given that n of the k packets have counter vales equal
to I and that the remaining k-n packets have counter values equal to 2.

Then, as found in [3], we have the following expressions, where X denotes the intensity of the
Poisson traffic process:

0< Lk.o<5 I 2k-2 , k :l (4)
4(4)

Lo.o = L1. o = L, i = 1 + Li.0 , i__l (5)

E(I IA,d)= Lk.0 e -XA (  (6)k! (6)

The expressions in (4), (5), and (6), in conjunction with the methodology in [4], are used in the

3(.
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computation of the algorithmic throughput and delays when the limit Poisson user model is
present. In Table 1, we include the computed upper and lower bounds, Du and D' respectively,
on the expected per packet delay D, for various Poisson intensities X, and for both the present
and the Capetanakis dynamic algorithms.

Proposed algorithm Capetanakis dynamic
Salgorithm

D DT Du D' Du

0.02 1.562 1.563 1.563 1.564
0.06 1.708 1.716 1.713 1.719
0.10 1.888 1.917 1.903 1.921
0.16 2.257 2.363 2.308 2.362
0.20 2.607 2.812 2.712 2.809
0.24 3.103 3.467 3.308 3.476
0.30 4.412 5.197 4.976 5.365
0.32 5.162 6.170 5.973 6.501
0.36 7.941 9.665 9.798 10.883
0.38 11.008 13.398 14.121 15.855
0.40 18.262 22.024 24.427 27.736
0.42 57.354 67.665 78.530 90.212

* Table I

Upper and Lower Bounds on Steady-State Expected Delays
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Regarding the throughput X* and the optimal window size A, the following results were
found.

Proposed Algorithm: X- = 0.4295 A' = 2.33
Capetanakis' Dynamic Algorithm: . = 0.4295 A = 2.673

Table 2

Throughputs and Optimal Window Sizes

From Table 2, we observe that, in the presence of the limit Poisson user model, the algo-
rithm in this paper attains the same throughput with the Capetanakis dynamic algorithm, but util-
izes a smaller window size. From Table 1, we observe that the two algorithms induce practically
identical delays for Poisson rates in (0, 0.30), while for Poisson rates in (0.30, 0.42], the present
algorithm is significantly superior.

Remarks It may seem surprising that the algorithm in this paper attains the same throughput with
the Capetanakis algorithm, and that it outperforms the latter in terms of delay performance.
Indeed, the expected lengths L, 0 in (4) are bounded by quadratic expressions, while the same
lengths, Lk, in the Capetanakis algorithm are bounded by linear functions of k. However,
-,. = 4.5 while L2 = 5. At the same time, since A* = 2.33 for the present algorithm, the proba-
bility of a higher than two multiplicity collision is very small. The multiplicity-two events thus
prevail, and the algorithm in this paper becomes superior to the Capetanakis' algorithm. We
note that, as found in [3], the algorithm performs very well in environments where strict delay
limitations exist. Then, it allows significant improvement in delay performance, at the expense
of minimal loss in traffic. In addition, the analysis of the algorithmic performance when strict
delay limitations exist is relatively simple, while the same analysis for the algorithms in [1] and
[2] is then exceedingly complex.

IV. Performance in the Presence of Feedback Errors and Operations in the Limited
Sensing Environment

Due to its simple rules, the present algorithm is much less sensitive to feedback errors than
the Capetanakis' algorithm. To see that, let 5 > 0 be the probability that an empty slot is errone-
ously interpreted as a collision slot, and let this be the only form of feedback error. Then, as
shown in [7], the throughput of the Capetanakis' dynamic algorithm reduces to zero, if 8 exceeds
0.5. In contrast, the throughput XIS of the present algorithm remains positive, for every 8 in [0, 1
). Indeed, given 8, let Bk, E 8, and S respectively denote the expected number of collision,
empty, and success slots during the resolution of a k-multiplicity collision, and let L8 be the
expected number of slots needed for the resolution of this collision. Then, the simple operations
of the algorithm easily induce the following expressions:

= B° , = .... = ° •o_(-8' E0 < l0k:2

k k'p



0L = (1-8-2 ; 0<8< I

S=sup (x fil (0) (7)
x2!0

where

_sx L8 Le-x L = (8)
_=- k! ' Lk=

Thus,

)• - - o(1-8)2 = (1_8)2 (0.4295) > 0 ; for all 8 in [0,1) (9)

Using methods as in [3], we developed bounds on the expected lengths L8, and then bounds
on the throughput X, for 8e(0, 1). We applied similar methods to compute bounds on the same
throughput for the Capetanakis dynamic algorithm, (in [71 the Capetanakis nondynamic algo-
rithm is considered). We exhibit our results in Figure 1. We obsrve the uniform superiority of
the proposed algorithm. We notice in particular, that for 8 = 0.5, the proposed algorithm attains
throughput 0.325, while the throughput of Capetanakis' dynamic algorithm is then zero.

We next considered the case when a single transmission may be interpreted as a collision,
with probability e, and when this is the only type of feedback error. Using the same methodol-
ogy as above, we then computed bounds on the induced throughput, X., for both the proposed
and the Capetanakis dynamic algorithms. Our results are included in Table 3. We observe that
the two algorithms have practically identical performance in this case.

I

C
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Proposed algorithm Capetanakis dynamic algorithm

0.02 0.420 0.422
0.04 0.412 0.414
0.06 0.403 0.407
0.08 0.395 0.399
0.10 0.387 0.392
0.20 0.346 0.353
0.30 0.305 0.3 13
0.40 0.265 0.273
0.50 0.225 0.231
0.60 0.184 0.187
0.70 0.142 0.142
0.80 0.098 0.097
0.90 0.052 0.049
1.00 0.000 0.000

Table 3

Throughput when with probability F-, a single transmission is interpreted as a collision.

Operations in the Limited Sensing Environment

In the limited sensing environment, it is required that each user monitor the channel feed-
back only from the time he generates a packet, to the time this packet is successfully transmitted.
Therefore, the users' knowledge of the channel feedback history is then asynchronous. The
objective in this case is to prevent new arrivals from interferring with some collision resolution
in progress. This is possible, if each user can decide whether a collision resolution is in* progressN
or not, within a finite number of slots from the time he generates a new packet. We observe that
a user who has a new packet and observes a C slot decides to wait, since he can then deduce that
there is some collision resolution in progress. Also, since a CR1 ends with two consecutive NC
slots, all the users who observe such an event, decide that there is no collision resolution in pro-
gress. In view of the above observations, we conclude that in the limited sensing environment,
the algorithm can be modified to operate as follows:

The window size is the same as in the full sensing case. The window slides from present to past,
however. In particular, the edge of the window is maintained one slot before the present time,
and the window slides through the unexamined interval from present to past, (see Fig. 2).
Within each window, the operations of the algorithm are the same as in the full sensing environ-%
ment.%

In the limited sensing environment, and for very light input traffic, the algorithm induces I66

expected per packet delay equal to 2.5. As the rate of the input traffic increases, the expected

7



delays approach those induced in the full sensing environment. The throughput ot 'he a:1,r.:'
remains identical to that in the full sensing environment. In Figure , %e pit t.,c tr,p.

delays that the algorithm induces, in both the full sensing and the limited snri g tr,'-
In the latter environment, the expected delays were computed via meth ii,,gie a, ,
[91.

Remarks We point out that the modification of Capetanakhs dvnamni, J.g," . .
in the limited environment, is still an open and complex prothict. 1,'
modification is simple when the proposed algorithm is adopted Ir. c.-, ,-

user model is valid, the Part-and-Try algorithm with h.narn teedh . .r b .L 'I- x:

operate in the lirmted sensing environment. 19]. 1101 The throughpur )f :rx ::,"-

then 0.45. But when the Poisson user model s not .,alid if iead. in dic.'.:, . .i..

proposed algorithm performs well in nonPotson user sstems

V. The Output Traffic Interdeparture Distribution

In this section, we concentrate on the computation )f the outpu. trau...........
bution. In particular, we find analytically the steady-state distrilu,,, , .i ! 7,,
two consecutive, successful transmissions, when the algorithm in rnht .ie-. .
point out that the algorithm generates an output traffic process Aith me,,rno, ; (),.T
correspond thus to the first order distribution from this process This tirsi ,re-r'r•
conjunction with a memoryless assumption, can be used as an approximanon ,,t t.e ..

traffic process, when studies of systems which deploy the algorithm and interact .k:

are undertaken. Such interactions may correspond, for example, to: I Secr%'.i tne
traffic from several systems that deploy the algorithm, by a single server queue 2 -rar. :>.:
ting the output traffic from a system that deploys the algorithm, through the transmison
of another random access system, (multi-hop problem). The methodology we use to ,ompute
first order distribution from the output traffic process, extends easily to higher order dismhutir,',
from the process as well. The computations become then exceedingly complex. nowever.

Our methodology utilizes the regenerative character of the output traffic process that the
algorithm generates, and its steps are as those in (4]. The initial challenge here lies in the deter-
mination of regenerative points, which are pertinent to the output traffic process. We define the
sequence {Pi)i.l of such points as follows: Each Pi is a collision resolution point, (CRP), vhi,.h
follows a slot containing a successful transmission and at which the lag equals one. P is the first
after zero such CRP, and for every i>1, Pi, 1 is the first after Pi such CRP. Let Si. ial denote the
number of successful transmissions in (0, Pi], and let d, denote the distance between the (n- I )-th
and the n-th successful transmission. Then, Si, i_>l is a renewal process, and, as it can be easily
seen, the process dn. n2l is regenerative with respect to it. Let us define, Ci = Si+ --Si, i>1.
Then Ci denotes the number of successful transmissions in the internal (Pi, Pi,1 ], where this
interval will be called the i-th cycle. Let us define,

I if d n ~ s(1 0 )In(s)= , otherwise

IV
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H = E{Pi+I - Pi) (I I

From the regenerative theorem [4], we then conclude that if C = E{C 1)< c, then,
limN N lim N C,

N I(s) = N---c E In(s)) = C- E{ I(s)) (12)n---- n7-
n=l nil n1l

where if the intensity of the input Poisson traffic is X, then,

C=,H (13)

In addition, since P(C = 1) > 0, the distribution of C1 is aperiodic and there exists a random
variable d.., such that the sequence da, n=l,2,... converges in distribution to d... Then, d.,,
represents the steady state interdeparture distance induced by the algorithm, and its distribution '
satisfies the equality,

C,
P(d.= s)= C 1 E{ZI n(s)) (14)

n=1 "

C,
The finiteness and the computation of the quantities C and E( y In(s)) in (14) are related to the

n--I
existence and computation of appropriate solutions to infinite-dimensionality linear systems.
Those systems and their solutions are included in the Appendix. In Table 4, we include the com-
puted upper and lower bounds, respectively denoted Psu and PS, on the probability P(d** = s), for
input traffic Poisson intensities X = 0.1 and X = 0.4. In Figure 4, we plot the lower bounds
against s, for various input traffic Poisson intensities X.

'p.

P1. =0.1 PU, --0.4 .".
s P P p pSu S.PSI

1 0.1420 0.1427 0.4702 0.4728
2 0.0816 0.0832 0.2000 0.2048
3 0.0704 0.0739 0.0998 0.10806
4 0.0641 0.0696 0.0612 0.0787
5 0.0537 0.0603 0.0401 0.0603
6 0.0502 0.0591 0.0280 0.0397
7 0.0420 0.0503 0.0196 0.0264
8 0.0364 0.0452 0.0099 0.0173
9 0.0332 0.0431 0.0057 0.0094

10 0.0265 0.0393 0.0013 0.0062

Table 4

Upper and lower bounds on the interdeparture distribution for Poisson rates

9
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--0.1 and X =0.4

From the results in Table 4 and Figure 4, we draw the following conclusions: (1) For low
rates X of the Poisson input traffic, (X < 0.1), the interdeparture distribution is close to the Ber-
noulli distribution whose parameter is p = ,e-X. In particular, denoting P, A P(d. = s), we then

have P, 'p (l-p)-,for s > 2. The probability P1, however, is then significantly larger than the
Bernoulli parameter p. The intuitive explanation of the latter phenomenon goes as follows: For
small rates X, single arrivals in two consecutive slots occur with probability p = (e-) ,

while the probability of a collision slot is then approximately equal to 2- X e-  2- X2.
Thus, for small rates X, single arrivals in two consecutive slots contribute one third of P1, while
the remaining two thirds are due to consecutive departures at the end of a collision resolution
interval. (2) As the rate X of the Poisson input traffic increases, the interdeparture distribution '

induced by the algorithm deviates further from the Bernoulli distribution. In fact, as X increases,
the mass of the interdeparture distribution accumulates at relatively small s values. For example, "

10
for X = 0.4, we have P1 = 0.471 and 1 P, - 1.

S=1

Remarks Our results showed that it is generally wrong to conjecture exponential interdeparture ,3-

distribution, (whose discript form is Bernoulli). In fact, this distribution is far from exponential.
Even for small input Poisson rates X, the probability P1 does not match the exponential fitting.
We point out that our general approach in this section and the corresponding regenerative points
apply to other algorithms as well, including the Capetanakis dynamic algorithm. However, the
development of the appropriate recursions is then an exceedingly complex task. The simple ,%
operations of the proposed algorithm present a remarkable advantage, which does not character- .
ize other existing algorithms.

Vl. Conclusions
.--

We presented a simple window random access algorithm for systems with binary, collision "-

versus noncollision, feedback. We analyzed the algorithm in the presence of the limit Poisson
user model, and for both its full sensing and limited sensing implementations. In addition to the
throughput and the delay analyses, we studied the effect of feedback errors on the throughput of
the algorithm and the output traffic nterdeparture distribution, both in the full sensing environ-
ment. As compared to the Capetanakis dynamic algorithm, the proposed algorithm is superior in
terms of delays and insensitivity to feedback errors. In contrast to the former, the algorithm can
also be easily adapted for implementation in the limited sensing environment, it allows for
analytical studying of the output traffic interdeparture distribution, and can be easily analyzed
when strict delay limitations are imposed, [3].

lie
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Appendix

We first provide some definitions.

l1k,m: Given k packets with counter values equal to 1 and m packets with counter values
equal to 2, the number of slots needed by the algorithm until the first successful
transmission, (and including it), after the k-multiplicity collision has been
observed.

nk,s: Given a collision resolution interval which starts with a k-multiplicity collision,
the number of length s interdeparture intervals within it. The length from the ini-
tial collision to the first successful transmission is included in the counting.

* hd: Starting with a CRP at which the lag equals d, d_>l, and which follows a success-
ful transmission, the number of slots needed by the algorithm to reach the first
lag-one CRP which follows a slot containing a successful transmission.

mds: Starting with a CRP at which the lag equals d, d>l, and which follows a success-
ful transmission, the number of length s interdeparture intervals until the first

* lag-one CRP which follows a slot containing a successful transmission. The dis-
tance from the initial CRP to the first successful transmission is included in the
counting.

P(k,1,8 I d): Given an arrival interval of length d, the probability that there are k arrivals in it,
that /k,= 8 , and that it takes I slots for its resolution, including the initial collision

* slot.
Pk(l): Given a k-multiplicity initial collision, the probability that it takes

1 slots for its resolution, including the initial collision slot.

The above definitions are needed for the derivation of recursions that are pertinent to the

infinite-dimensionality systems associated with the quantities in (14). We first note that:

H=E(hl) , C=XH (A.1)

C,
E( 7, In(s)}=Ejmjs} (A.2)

C rs--

Auxiliary Recursions

The operations of the algorithm induce the following recursions:

(1 ,m = O;Vm , P(Ikm=O)=0 ;V k.-2, Ym

Io, if m=l

lo0m = l+Imo , P(I 0 M = 1) =0, if ml
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k. I 1+ I .+k-i ; with probability (i] 2 -k k -2

1 ,if k=land s=O
P(Ik = s) =P(1Im s-i), if k=-O, s2!1

2 -kj [ p ' (1im - =s-i), if k>-2, s :i

nl~s= 0,i l

{ k-1. swith probability P(11ko~s- 1)

k2!2; k,s= 1 + k-14 ,with probability P(1k0 = s-)

Z, P(11.0 = s-i) , if s>1
i=2

Nks E (nk.1= k
1 + P(1 j0 = O)= 1, if S=1I

i--2

[1 , ifl1= I
C.k=O,l;Pk()= 1 0 ,otherwise ,P2(1) =P(12.0 =1-2), forI2!3

CP(ki/plId) = e-x '~ - P(k k- 1--1

13
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Recursions for hd

Given Poisson intensity X, and from the operations of the algorithm, we easily conclude:

I , with probability ;Lde -) d

dA; hd = P+h1 , with probability e- d

I +h/ , with probability e -  (  Pk(l ) ' I_2
k=2k()12

d>A ; hd= I +hd..&+ t , with probability e -  Pk(/)

k-pO k

and thus,

HdAE(hd)= e-Xd +E{ld}+e-H 1 + e ~ (d)k+~ ~ ~ t Ek )+eXd,+ e-dQ Pk(1)HI d<_A

IL;r2 1?2 k!I

Hd = E{/ A}+ Ik Pk(/)Hd-_A+ • d>A (A.1)

where, X

E{I ~ ~ 2d = : e - : -[) Pk(1) .Il,

k!I t>I k! .

Recursions for mA.

For [J denoting integer part , for w.p. meaning with probability, and for Poisson intensiy X,
we conclude:

1,

.5



n I.,; w.p. -dd

pX (1d~
nk.,+ ml,; w.p. e -Pk l) ;k;-2

cLA; rno, = kI + mi.,; w.p. P(O I d) n2!0 Pn(OI I)P(k,I,p~ 11); k2
nVp+2*s

1 + nk1 5, + ml,,; w.p. e -~)~ n2!0 eXP(kop)Pk-(-p-1);k >2
k! n+p+2=s

For d > A:

Md~s = nk., + md...A+Is ; w.p.e -AAk

= nk-1,, + Md-n(A,&iI+-s W.P. e-~~)(A P(IkOeP) Pk-1(' -P-1), d-I f -A
k!-i-

+ 1 + l~ + Md-(A..1>+I1s ;-P w-Ap.t 1)p P(I k.= s-n-I1) Pk- I (I-s+n) k ,

;if d-A I
A-i

Xr- d-A (A-

I d-A

I~k A-1 Ai

+ in 1 5 ; wk-I p. C dA k->2 P. 1 t--)
A-1

is



-A Zk
nk~l1s + mn1 ,,; w.p.e +1) •-  -.lPI~ = p)Pk..l(! -p-i) ; k,2

n+2+p4[ 4 * ~s

A--1

+ nk- , + mi.,; w.P.e-x k P 1k.0 s---

d-A-1

• Pk-I I +n-sA( d- + 1

=I," w.p.k.e-X(d+s- ";if S-2-. I!>d -

=I ; W.P. d4A (A-JI ; ifs= d-A

Let us define,

PS1A  I e-s tk
U(X){= 0 -,

A e- 8k

A e-8 8k

Then, using the above defined quantities, and the recursions on rod~s, we easily find:e

(A.2.

Ford A:

Md.s E E(md.}= N s + E Mi's [px(/) + PX (I)1+

13 1 --e-
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+ C rN, - P.-]+ U(s-2)e-Xdf e-x(s-) Y, e~

+ )Xe-Ls-1 ) - x~

(A.3)

For d>Aand p L p p=0, 1A-1
Md,, NAs+ Md-&I M 1 PXA(l)

+ e%A{ Nx~d+p...n,, - PxdpP)31+ L? s Px(d+P.-PA)('

Je-)(d+P) 1)s-P.- +IM' x(

+ (PI e!T(InC-A1V [NAA.-P.l, + I e-A I Md-n(A-u>g.s XM
"'Sn'S 1-v1

+U(p-1)U(s-2)e-)L(S'1 s-2 AinpXA.m
mn-s-1-min(p. s-i)

-U(s-2)Xe-x'd+P [(d+p-pA)eXpA + 2e-~

+ U(s-1-p) e-XAP PX(d+p-pA).s-1-p

X~~-)s-2-p Xr
+ U(S-2-p) e- E e Pj

M=O
(A.4)

Bounds

For the numbers Nk.5, we used the following bounds:

0:5 Nk., <k-1 ; Vs (A.5)

Regarding the numbers Hd, we used the methodology in [4], and proved that,
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ajd+Pj5,Hd~czd+N , d 1l (A.6)

where,

a, =cLu=IIA-E{1I IAf E(I I A)

=n l~IA(d) , = max[--au , lM..cQ(d))

for:

Q(d) = Xde-xd] { I d) + a4[E(1 I d) - d - kde-] }
Bounds on the numbers Md 5 can be developed similarly with those for the numbers Hd. The

former are significantly more complicated, however. Instead, we used the following simpler and
intuitively clear bounds, where Hu? denotes the upper bound on the quantity Hd:

Mcits !MIJu (A.7)

We used the bounds in (A.7), for d 30.
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